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Abstract We look at modeling carbon nanostructures from a theoretical graph net-
work view, where a graph has atoms at a vertex and links represent bonds. In this way,
we can calculate standard statistical mechanics functions (entropy, enthalpy, and free
energy) and matrix indices (Wiener index) of finite structures, such as fullerenes and
carbon nanotubes. The Euclidean Wiener index (topographical index) is compared
with its topological (standard) counterpart. For many of these parameters, the data
have power law behavior, especially when plotted versus the number of bonds or the
number of atoms. The number of bonds in a carbon nanotube is linear with the length
of the nanotube, thus enabling us to calculate the heat of formation of capped (5,5)
and (10,10) nanotubes. These properties are determined from atomic coordinates using
MATLAB routines.

Keywords Fullerenes · Carbon nanotubes · Statistical mechanics · Wiener index ·
MATLAB

1 Introduction

Carbon has many allotropes (diamond, graphite, fullerenes, and carbon nanotubes,
(CNTs)) that illustrate the amazing chemical and structural diversity of element num-
ber six. We consider the nanosized forms in our calculations; fullerenes and CNTs.
Fullerenes were discovered in 1985 [1], carbon nanotubes in 1991 [2], and graphene
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in 2004 [3]. As a result of these groundbreaking discoveries, there are now literally
thousands of scientists studying novel forms of carbon and their properties.

The first fullerene to be discovered was C60, with a structure described as similar
to that of a football (soccer ball) [1] with pentagonal cycles separated by hexagonal
ones, see Fig. 1a. This so-called isolated pentagon rule (IPR) is thought to stabilize
the fullerene structure, since pentagonal bonds cost more energy than hexagonal ones
[4]. Thus, pentagonal cycles are found separated by hexagonal ones, so that there is
maximum separation between the two types. The smallest fullerene is C20, consisting
of 12 pentagons. In general, a fullerene has n 3-valent vertices with 12 pentagons and
(n/2 − 10) hexagons, with (3/2) n carbon–carbon bonds [5,6]. Experimentally, there
is evidence of fullerenes as large as C418, found in soot [7]. There are many isomers
of the fullerene structures, so that several possible structures exist; however, most of
these are not favored energetically.

Nanotubes were discovered in 1991 [2], as straight ‘helical’ coils of carbon,
although filamentous carbon [8] was known prior to 1991. Thus a nanotube can be
thought of as a rolled up sheet of graphene, with hemispheres of fullerenes at the ends.
A commonly accepted growth mechanism [9,10] is that nanotubes form by catalytic
action of transition metals, such as iron or cobalt, with a cap at one end and the open
growth end eventually becoming closed after some aspect ratio is created. The nan-
otube analogue to C60, the most common fullerene, seems to be a (10,10) nanotube
capped with hemispheres of C240 [10], see Fig. 1b, c.

Nanotubes are defined [11] by their ‘chiral vector’, or angle cut through the 2D
layer of graphene, with

Ch = na1 + ma2 ≡ (n, m) (1)

where the indices (n, m) describe the number of unit vectors in the hexagonal graphene
honeycomb lattice. There are two common geometries, a ‘zigzag’ nanotube, with a
chiral angle of θ = 0◦, and an ‘armchair’ nanotube with θ = 30◦, leaving a general
chiral nanotube with 0 ≤ θ ≤ 30◦. The chiral angle is given by

θ = tan−1
[√

3m/(m + 2n)
]

(2)

and the nanotube diameter is

dt = Ch/π = √
3aC−C (m2 + mn + n2)1/2/π (3)

where aC−C is the carbon–carbon nearest neighbor distance (1.421 Å) in graphite.
Thus the (10,10) nanotube is of the armchair variety.

2 Methods

We employ a graph-theoretical approach, where nodes represent atoms, and an edge
represents a bond between sites, G = (V, E). We create a graph of the nanosized
form of carbon by creating bonds (links) between nearest neighbors up to 1.3 times
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Fig. 1 a MATLAB plot of
C60(Ih). Contrast indicates
pentagonal cycles in the
structure. b MATLAB plot of
C240(5v). Contrast indicates
pentagonal cycles in the
structure. c MATLAB plot of a
carbon nanotube (10,10) 100 Å
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the shortest neighbor distance. These vary from 20 to 8,360 atoms for fullerenes and
nanotubes. An adjacency matrix is created and may exist in two forms. The standard
form [12] is

A =
{

H(rc − ri j ) i �= j
0 i = j

(4)

where the Heaviside step function H(rc − ri j ) = 1 if rc < 1.3∗ (shortest distance to
ri j ), and i and j represent atomic sites, and rc is the cutoff value. Alternatively, we
may consider the actual Euclidean distances in the adjacency matrix [13,14], so that
H(rc − ri j ) = ei j , the Euclidean distance between atoms.

The approach to modeling the free energy, enthalpy, and entropy has been discussed
in the literature [15,16]. These can all be determined from the appropriate adjacency
matrix. We also calculate one of the oldest indices, the Wiener index [17], as

W = 1

2

N∑
i=1

N∑
j=1

di j (5)

where N is the number of atoms and di j is the shortest path distance between atoms
i and j . In the standard form, the distances between atoms = 1, and in the Euclidean
form [13], it is ei j , so that we calculate WE , the Euclidean 3D Wiener index. The
collection of data starts from the atomic coordinates, and proceeds to calculating the
adjacency matrix, and from it, all the results come from one MATLAB routine.

3 Results

In Fig. 1, we show plots of finite nanocarbons, C60 (Ih), C240(5v), and a (10,10)
nanotube. In our notation, the fullerene isomers are listed in parentheses as Ih or
5v. The fullerenes and nanotubes have atoms with threefold coordination and the
hexagonal and pentagonal cycles are shown with contrast.

Once we have created the adjacency matrix, the statistical mechanics data can be
calculated [15,16]. The partition function is

Z(G, β) = Tr(eβA) (6)

where A is the adjacency matrix for the graph G, and β = 1/(kBT). At T = 300 K, we
have β = 38.68173/eV. The entropy can be determined as

S(G, β) = −kB

∑
j

λ j p j + kB ln(Z)
∑

j

p j (7)

where λ j is an eigenvalue of A and

p j = eβλ j

Z(G, β)
(8)
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Table 1 Heat of formation
parameters for the nine
structural motifs [19]

Structural motif εi (kcal/mol)

pp p
p 19.8

pph
p 17.6

pph
h 10.3

ph p
p 15.7

phh
p 12.4

phh
h 7.8

hh p
p 6.2

hhh
p 4.7

hhh
h 1.7

is the probability that the ensemble occupies a microstate j . The free energy is the
natural logarithm of the partition function,

F(G, β) = − ln Z(G, β)

β
(9)

and the enthalpy can be defined as follows

H(G, β) = − 1

Z(G, β)
Tr(AeβA). (10)

We then plot the free energy, enthalpy, and entropy, per bond, versus the number of
bonds in the nanocarbons. This results in plots with good power law [18] regres-
sion statistics as shown in Fig. 2. We plot the data/bond versus the number of bonds
for fullerenes and nanotubes. The distinction between (a) and (b) is that in (a), we
have used an adjacency matrix with Euclidean distances, and in (b), we have used
the standard adjacency matrix with zeros and ones. The best-fit equations in (a) have
different leading coefficients, so that the entropy and enthalpy coincide (neglecting
the sign difference) for small (≈50 atoms) nanocarbons, and since the slope is dif-
ferent, the plots diverge for larger structures. These quantities are divided by the
number of bonds in the nanocarbon and plotted versus NB , to give a power law plot.
The asymptote of zero for large NB makes intuitive sense, since if we imagine the
data/bond is finite, then as the number of bonds becomes large, we have zero as a limit.
Note that the free energy and enthalpy have their signs reversed to allow them to be
plotted.

For the fullerenes and nanotubes, we can calculate the energy of formation based on
the types of bonds [19] in the structures, see Table 1. We use three types of bonds, as
hh, hp, and pp, indicating hexagonal or pentagonal edges, and then further subdivided
as to whether the opposite ends of the bond meets a hexagonal or pentagonal cycle.
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a

b

Fig. 2 Power law plots for fullerenes and nanotubes showing the free energy, enthalpy, and entropy/bond
versus the number of bonds. The data clearly exhibits power law character. a This plot uses a Euclidean
adjacency matrix. b This plot uses a standard adjacency matrix
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Fig. 3 Heat of formation for (5,5) and (10,10) armchair nanotubes versus length in Angstroms

This gives a total of nine bonds and the heat of formation can be calculated as

�H f =
moti f s∑

i

εi ni (11)

where εi is the energy contribution of each structural motif (nine) and ni is the number
of bonds associated with that motif. Since fullerenes have been analyzed extensively
[20–22], we show �H f versus length in Angstroms for two of the more common nan-
otubes, the (5,5) and (10,10) armchair varieties. For nanotubes, the heat of formation
includes the energy to create the cap and then the length of the tube. We plot these
results in Fig. 3. The (5,5) nanotubes contain a cap of C60 which has 60 phh

h bonds and
30 hh p

p bonds to give �H f = 654 kcal/mol. As the length of the nanotube increases,
we add hhh

h bonds at 1.7 kcal/mol for each bond. The (10,10) nanotubes have a cap
of C240 (see Fig. 1b) [7], which has 60 phh

h bonds, 60 hhh
p bonds, and 240 hhh

h bonds,
to give�H f = 1158 kcal/mol. Again, as the length of the nanotube increases, we add
hhh

h bonds at 1.7 kcal/mol for each bond. From the graph, we see that since the (10,10)
tube is larger, the slope is 41.63 kcal/mol per Å length versus 20.689 kcal/mol per Å
length for the (5,5) nanotube. For the (10,10) nanotubes, this gives a cap energy of
64 eV and a length energy of 1.8 eV/Å. These data are in good agreement [9] (40 and
0.74 eV/Å) with estimated measurements.
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Table 2 N is the number of atoms in the nanostructure, fullerenes are denoted by CN , and nanotubes by
their chiral indices followed by their length in Angstroms

N NB Nanostructure Wiener index (W) Euclidean Wiener index (WE ) Ave bond (Å)

20 30 C20(Ih) 500 710.02423 1.4200

32 48 C32(D3d ) 1,696 2,408.3699 1.4200

40 60 C40(Td ) 3,000 4,260.0679 1.4200

50 75 C50(D3) 5,275 7,490.6239 1.4200

60 90 C60(Ih) 8,340 11,917.75156 1.4320

70 105 C70(D5h) 12,375 17,672.68417 1.4307

84 126 C84(D2) 19,646 28,041.35179 1.4303

240 360 C240 277,440 392,329.2316 1.4187

540 810 C540 2,119,320 2,994,979.407 1.4190

720 1,080 C720 4,352,340 6,162,553.116 1.4207

100 150 (5,5)5 30,580 42,310.62308 1.3879

140 210 (5,5)10 72,860 101,743.2403 1.3962

260 390 (5,5)25 383,700 541,217.5044 1.4059

460 690 (5,5)50 1,899,100 2,689,448.448 1.4107

880 1,320 (5,5)100 12,350,940 17,526,597.26 1.4150

4,120 6,180 (5,5)500 1,186,916,820 1,685,572,294.8 1.4164

320 480 (10,10)5 569,680 804,021.9498 1.4156

400 600 (10,10)10 997,120 1,410,161.755 1.4165

640 960 (10,10)25 3,341,840 4,737,709.644 1.4178

1,040 1,560 (10,10)50 12,327,040 17,496,098.43 1.4193

1,860 2,790 (10,10)100 62,759,375 89,129,458.54 1.4187

8,360 12,540 (10,10)500 5,046,069,000 7,169,083,944.2 1.4199

The topological Wiener index is W, and the Euclidean Wiener index is WE . The bond length is in Angstroms

Since we are using a graph-theoretical language, we also calculate the Wiener index
for fullerenes and nanotubes, based on the coordinate information in MATLAB. We
note that for fullerenes, the Wiener index of C60(Ih) = 8,340 has been known since
1992 [23], and since then some additional results have been calculated [24–26]. The
Wiener index for armchair and zigzag nanotubes has been known since 2004 [27,28].
In Table 2, we list some of the Wiener indices for the fullerenes we investigate, and also
the (5,5) and (10,10) nanotubes. The Wiener index for the fullerenes up to C84 agree
with previous [24] results, and we add new results up to C720 and also the Euclidean
indices for all nanocarbons. In Fig. 4, we plot the Wiener index versus N, the number
of carbon atoms, to give a power law relationship. We note that for the fullerenes, the
Wiener index depends on the structure, so each isomer has a different value for the
index. Also, for the nanotubes, the original calculation [27,28] of the Wiener index
did not include caps on the ends, so a direct comparison is not possible. Our modeling
is for nanotubes up to 500 Å in length, with caps at both ends.
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Fig. 4 Power law plot of the Wiener index (standard and Euclidean) for fullerenes and nanotubes versus
the number of atoms, N

4 Conclusion

In summary, we have determined the power law behavior of the free energy, enthalpy,
entropy, and Wiener index of nanocarbons consisting of 20–8,360 atoms. We use
atomic coordinates to calculate the Wiener index for fullerenes and nanotubes. There
are some minor distinctions when using the Euclidean Wiener index, which we have
included for completeness. The heat of formation of nanotubes follows a linear rela-
tionship with length in agreement with known data.

We have outlined procedures applicable to modeling finite carbon nanostructures
using only the 3D coordinates of the structures. These methods will allow others to
investigate similar types of models and we encourage the understanding of nano-
geometries as we move into the twenty-first century.

References

1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)
2. S. Iijima, Nature 354, 56–58 (1991)
3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva,

A.A. Firsov, Science 306, 666–669 (2004)
4. A. Rodriguez-Fortea, N. Alegret, A.L. Balch, J.M. Poblet, Nat. Chem. 2, 955–961 (2010)
5. M. Deza, P.W. Fowler, A. Rassat, K.M. Rogers, J. Chem. Inf. Comput. Sci. 40, 550–558 (2000)

123



1220 J Math Chem (2013) 51:1211–1220

6. M. Dutour Sikiric, M. Knor, P. Potocnik, J. Siran, R. Skrekovski, Discret. Math. 312, 729–736 (2012)
7. F. Beer, A. Gugel, K. Martin, J. Rader, K. Mullen, J. Mater. Chem. 7(8), 1327–1330 (1997)
8. R.T.K. Baker, Carbon 27, 315–327 (1989)
9. A. Thess et al., Science 273, 483–487 (1996)

10. C. Jin, K. Suenaga, S. Iijima, ACS Nano 2(6), 1275–1279 (2008)
11. M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49(6), 705–814 (2000)
12. E. Estrada, N. Hatano, Chem. Phys. Lett. 486, 166–170 (2010)
13. S. Nikolic, N. Trinajstic, Z. Mihalic, S. Carter, Chem. Phys. Lett. 179, 21–28 (1991)
14. A. Vodopivec, F.H. Kaatz, B. Mohar, J. Math. Chem. 47, 1145–1153 (2010)
15. E. Estrada, N. Hatano, Chem. Phys. Lett. 439, 247–251 (2007)
16. F.H. Kaatz, E. Estrada, A. Bultheel, N. Sharrock, Physica A 391, 2957–2963 (2012)
17. H. Wiener, J. Am. Chem. Soc. 69, 17–20 (1947)
18. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661–703 (2009)
19. M. Alcami, G. Sanchez, S. Diaz-Tendero, Y. Wang, F. Martin, J. Nanosci. Nantechnol. 7, 1329–1338

(2007)
20. A. Rojas, M. Marinez, P. Amador, L.A. Torres, J. Phys. Chem. B 111, 9031–9035 (2007)
21. J. Cioslowski, N. Rao, D. Moncrieff, J. Am. Chem. Soc. 122, 8265–8270 (2000)
22. S.L. Lair, W.C. Herndon, L.E. Murr, S.A. Quinones, Carbon 44, 447–455 (2006)
23. O. Ori, M. D’Mello, Chem. Phys. Lett. 197, 49–54 (1992)
24. K. Balasubramanian, J. Phys. Chem. 99, 10785–10796 (1995)
25. D. Babic, D.J. Klein, I. Lukovits, S. Nikolic, N. Trinajstic, Int. J. Quantum Chem. 90, 166–176 (2002)
26. P.W. Fowler, Croatica Chem. Acta 75(2), 401–408 (2002)
27. P.E. John, M.V. Diudea, Croatica Chem. Acta 77(1–2), 127–132 (2004)
28. M.V. Diudea, M. Stefu, B. Parv, P.E. John, Croatica Chem. Acta 77(1–2), 111–115 (2004)

123


	Statistical properties of carbon nanostructures
	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Conclusion
	References


